脉冲激光辐照 CCD 探测器的热损伤机理

高刘正1 邵铮铮1 朱志武2 黄 任1 常胜利1

/ 国防科学技术大学理学院,湖南长沙 410073

(2 国防科学技术大学光电科学与工程学院,湖南长沙 410073)

摘要 采用扫描电子显微镜和显微拉曼光谱仪研究了受脉冲激光损伤的 CCD 的形貌和光谱特性。在损伤表面上 得到 CCD 各层的形貌,比较出不同层受激光损伤的先后次序,观察到感光区附近遮光层和多晶硅电极的破坏,研 究深入到单个像素尺度;在截面上测得损伤区内部硅材料拉曼光谱特征峰红移,判定内部硅材料发生熔融,并造成 表面多晶硅电极和基底短路,解释了 CCD 受皮秒激光热损伤完全失效的机理。

关键词 激光技术; 激光损伤; 脉冲激光; CCD 成像器件; 破坏机理; 扫描电子显微镜; 显微拉曼光谱仪 中图分类号 O436 **文献标识码** A **doi**: 10.3788/CJL201340.s103002

Thermal Damage Mechanism on CCD Detector Irradiated by Pulsed Laser

Gao Liuzheng¹ Shao Zhengzheng¹ Zhu Zhiwu² Huang Ren¹ Chang Shengli¹

 $({}^{1}\textit{College of Science, National University of Defense Technology, Changsha, Hunan 410073, China$

² College of Optoelectronic Science and Engineering, National University of Defense Technology,

Changsha, Hunan 410073, China

Abstract The morpha and spectral character of damaged CCD, which has been irradiated by picosecond pulsed laser, are studied by using scanning electron microscope and micro-Raman spectrometer. Morphological damaged images of different layers are observed on the surface of CCD. The damage sequence is decided by comparing different layers' conditions with a scale as small as a single pixel. The damage status of W-shield and poly-Si around one pixel is observed. On the cross section, the red-shift of Raman spectrum of bulk silicon material is measured and it means that bulk silicon melts, which brings a short-circuit between surface poly-Si electrode and substrate. The short-circuit explains the thermal mechanism of complete failure.

Key words laser technique; laser damage; pulsed laser; CCD imaging device; damage mechanisms; scanning electron microscope; micro-Raman spectrometer

OCIS codes 140.3538; 140.3330; 040.1520

1 引 言

CCD 是一种电荷耦合成像器件,具有尺寸小、 重量轻、功耗低、灵敏度高、光谱响应宽和动态范围 大等优点,广泛应用于摄像、监控和图像处理等领 域。以 CCD 为核心的光电部件在光电对抗中极易 受到高能激光的辐照而产生损伤^[1],因此研究激光 对 CCD 器件的辐照效应和破坏机理具有重要意义。 在脉冲激光辐照损伤 CCD 方面,国内外做了大量的 工作。Zhang 等^[2]在 1993 年用纳秒脉冲激光辐照 CCD 研究了其功能函数的退化,并用透射扫描电子 显微镜观测到 CCD 表面多晶硅层熔融的部分痕迹。 当时 CCD 的结构简单,虽然实验数据不能满足当前 需要,但是研究方法和破坏机理具有普遍意义。国 内许多科技工作者开展了脉冲激光辐照损伤 CCD 的理论分析和实验研究。Wang 等^[3]研究了硅材料 在毫秒、微秒和皮秒激光辐照下的热损伤效应,得出 了损伤阈值随着激光脉宽增加而增加的结论。姜楠 等^[4]建立了脉冲激光辐照 CCD 多层结构的热力耦

收稿日期: 2013-05-21; 收到修改稿日期: 2013-06-17

作者简介:高刘正(1987—),男,硕士研究生,主要从事纳米电子方面的研究。E-mail: gaoliuzheng@126.com

导师简介:常胜利(1970—),男,教授,硕士生导师,主要从事光谱学及纳米材料表征技术等方面的研究。

E-mail: slchang@nudt.edu.cn(通信联系人)

合数学物理模型,得到不同能量密度下 CCD 的瞬态 温度场和热应力场。Li 等^[5]利用热力耦合数学物 理模型研究了高重频和高峰值能量的激光对 CCD 的损伤效应。孙守红等^[6-8]把 CCD 的完全损伤失 效归结为:多晶硅电极熔融或者控制电极下的绝缘 层发生熔融,造成相邻时钟线间或者时钟线与地间 短路,导致 CCD 时钟驱动脉冲混乱。但多数文献并 没有给出 CCD 熔融的证据,只有文献[8]观察到 CCD 衬底的微观损伤形貌。本文从 CCD 的熔融特 性出发,利用扫描电子显微镜和显微拉曼光谱仪,在 微观尺度上测量 CCD 受到脉冲激光辐照损伤之后 表面和截面的微观损伤形貌和熔融特性的变化,得 到的实验数据有效地支持了 CCD 完全失效的热熔 融机理。此外,本实验利用显微拉曼光谱仪测得了 CCD 硅基底熔融之后拉曼特征峰的红移。

2 实验及结果分析

实验采用 CCD 的型号为 Sony ICX405AL,为 四相驱动黑白 CCD 芯片,是典型的行间转移型面阵 CCD(IT-CCD),有效像素数为 500 pixel(水平)× 582 pixel(垂直),像素尺寸为 9.8 μ m(水平)× 6.3 μ m(垂直),其结构见图 1。图 1(a)为原子力显 微镜扫描 CCD 表面得到的图像,微透镜的高度约为 2 μ m。图 1(b)为图 1(a)中黑线位置对应的垂直方 向截面结构图,截面材料从表面到内部依次为微透 镜层、二氧化硅光学增厚层、钨遮光层、多晶硅电极、 硅基底表面的二氧化硅绝缘层、N 型和 P 型掺杂的 硅基体材料和 N 型硅基底^[8]。中间的硅掺杂材料 为掩埋光电二极管,两侧为负责电荷传输的沟道结 构,N 型硅基底为整个 CCD 芯片提供偏置电压。

图 1 Sony ICX405AL 型号 CCD 的结构图。(a) 原子力显微镜扫描 CCD 表面图像; (b)(a)图中黑线位置对应的截面结构图

Fig. 1 Sketch map of Sony ICX405AL CCD. (a) Solid surface map by atomic force microscopy;

(b) cross-section image related to the dark line in figure (a)

2.1 激光辐照实验

实验采用激光器的工作波长为 1064 nm,脉宽 25 ps,输出激光束为线偏振、准基模,最大单脉冲能量为 15 mJ。激光经过半波片和偏振分光棱镜衰减 后到达 CCD 表面。通过激光能量标定和光斑尺寸测量,计算得出 CCD 表面平均能量密度约为 1 J/cm²。当对 CCD 表面辐照 3 个脉冲时,输出屏幕全黑,CCD 完全失效。

2.2 损伤表面表征和结果分析

将损伤 CCD 从封装部件中取出,用光学显微镜 观察损伤区域,结果见图 2。图 2(a)中损坏区域包 含水平 31 pixel,垂直 48 pixel,尺寸大约为水平 304 μm,垂直 302 μm。去掉表面透镜层后,发现损 伤区域有明显的烧蚀界线,界线内表面材料被烧蚀, 界线外存在损伤点,见图 2(b)。在局域放大图 2(c) 和 2(d)中发现,损伤区域的焦点处高度低于正常表 面,说明中间低,表面材料被烧蚀。图 2(c)中的边 缘界线说明,二氧化硅光学增厚层消失,留下了光反 射率高的金属钨遮光层。由于光学显微镜放大倍数 有限,图像的对比度不高,所以不能比较遮光层和感 光区的烧蚀情况,进一步的表征分析需要更有效的 探测设备。

为了得到更清晰的微观形貌图像,用扫描电子 显微镜观察去掉表面微透镜层的损伤区,结果见图 3。图 3(a)为损伤区域全貌,与图 2(a)相比旋转了 90°,倾斜的两条痕迹为实验设备刮伤所致。对其左 下方黑方框部分进行放大,得到图 3(b)。从图 3(b) 中可以看到:边缘黑方框区域 CCD 感光区熔融,其 周围的遮光层破裂;中央区域表面光滑,遮光层和多 晶硅电极消失。图 3(c)为图 3(a)中央黑方框区域 的放大图,其表面的遮光层和电极结构被剥离,露出 硅基底,表现出感光区域的热熔融形貌,烧蚀区域由

图 2 利用光学显微镜观察的受损 CCD 的形貌图。(a) 受损区域图像;(b) 去掉微透镜层后损伤表面图像; (c) 图(b)边缘黑框区域放大图;(d) 图(b)中间黑框区域放大图

Fig. 2 Morphological images of damaged CCD by optical microscopy. (a) Original damaged area; (b) damaged area after removing the micro-lens; (c) enlargement of edge area in figure (b); (d) enlargement of central area in figure (b)

感光区向周围扩展。图 3(d)为中央区域单个像素的图像,其感光区烧成蜂窝状,残留的碎片堆积在 CCD 表面。因此,扫描电子显微镜观察 CCD 损伤 表面的结果表明:CCD 受到高能皮秒脉冲激光辐照时,表面结构出现热熔融损伤,感光区被高温烧蚀, 然后烧蚀附近的遮光层,能量高时会将遮光层和硅 电极完全剥离。遮光层钨的熔点为3620℃,而硅的 熔点仅为1410℃,说明遮光层下的硅熔融是造成电 极间短路的一个重要原因。

图 3 用扫描电子显微镜观察去掉微透镜层 CCD 的损伤区域形貌图像。(a) 损伤区域全貌图; (b) 边缘到中间的过渡区域形貌图;(c) 中央区域形貌图;(d) 中央区域单个像素形貌图 Fig. 3 Morphological images of damaged CCD without micro-lens by scanning electric microscope. (a) Panorama of the damaged area; (b) area from edge to the centre; (c) central area; (d) a single damaged pixel

2.3 损伤截面实验和结果分析

为了表征损伤区域内部结构和性质的变化,选择

损伤区域的垂直截面为研究对象,对损伤的 CCD 进行镶样、打磨和抛光。得到的实验样品如图 4 所示。

图 4 CCD 经过镶样、打磨和抛光处理之后的样品图 Fig. 4 CCD sample after inserting, abrading and polishing 利用显微拉曼光谱仪测量实验样品打磨之后横 截面材料物理性质的变化,得到的结果如图 5 所示。 理论上,硅材料的热熔融破坏其规则的晶格结 构,晶格发生膨胀,产生轻微的拉应力,导致拉曼光 谱红移^[9]。实验中测得未损伤区域体硅的拉曼特征 峰主峰为 516 cm⁻¹,损伤点和边界点的拉曼特征峰 主峰均为 514 cm⁻¹。说明损伤区域的拉曼特征谱 发生红移,证明损伤区域材料发生热熔融。

图 5 损伤截面在打磨之后的拉曼图谱。(a) 在暗场中损伤截面图像, 其中 1 为未损伤点,2 为损伤点,3 为临界点;(b) 图(a)中对应各点的拉曼特征谱图 Fig. 5 Raman spectra of cross-section silicon after abrading. (a) Image of cross-section in dark field, point 1 is fine,

point 2 is damaged, and point 3 is on the borderline; (b) Raman spectra of the three points in figure (a)

用扫描电子显微镜分别观察打磨之后和抛光之 后的损伤截面,得到的结果如图 6 所示。图 6(a)为 打磨之后截面的形貌图。截面材料从上到下依次为 镶样材料,激光损伤区域和硅基底。损伤区域上表 面宽度约为 288 μm,纵向深度约为 77 μm,超出硅 表面掺杂层的深度,说明表面产生的高温融化表面 掺杂材料到达硅基底内部。硅材料熔融之后,掺杂 区电势分布改变,导电性增加,这时表面多晶硅电极 与基底偏置电路短路,致使 CCD 完全失效。

镶样材料和 CCD 的表面接触不紧密,打磨外力

图 6 扫描电子显微镜观察激光辐照损伤 CCD 的截面形貌图。(a) 打磨之后;

(b) 抛光之后;(c) 图(b)中点1区域的放大形貌图;(d) 图(b)中点3区域放大形貌图

Fig. 6 Morphological images of CCD's cross-section by scanning electric microscope. (a) After abrading;(b) after polishing; (c) enlargement of 1 area in figure (b); (d) enlargement of 3 area in figure (b)

会对 CCD 的表面造成一定的损伤。图 6(a)中的 1、 2 区域为打磨外力作用的断裂结构。抛光之后的形 貌将不同断裂结构的差异清晰表现出来,如图 6 (b)所示[其中的 1、2 区与图 6(a)相对应,中间熔融 材料掉落]。1 区具有不规则的裂痕,在放大图 6(c) 中尤为清晰,说明这部分为打磨外力损伤区域。3 区为熔融材料与体硅材料的边界,放大图 6(d)中边 界光滑,与外力损伤界面形成鲜明对比,说明是材料 熔融所致。因此,通过对 CCD 损伤区域截面的分 析,得到 CCD 芯片内部的热熔融损伤形貌,高温融 化表面掺杂材料并损伤硅基底,表面硅电极与基底 发生短路,造成 CCD 完全失效。

3 结 论

利用扫描电子显微镜和显微拉曼光谱仪对受到 高能皮秒脉冲激光损伤 CCD 的形貌和物理性质进 行了实验研究。CCD 损伤表面的微透镜层和二氧 化硅增厚层消失。在损伤最严重的中心区域,遮光 层和多晶硅电极消失,感光区被烧成蜂窝状;边缘部 分,高温首先烧蚀感光区,继而破坏遮光层和硅电 极。在损伤截面上,对损伤区域和未损伤区域进行 拉曼光谱表征,拉曼光谱特征峰的红移证明了损伤 区域内部硅材料发生热熔融效应。硅表面掺杂区被 高温破坏,热熔融深入到硅时钟基底材料,硅电极与 基底短路,导致 CCD 完全失效。综上所述,通过扫 描电子显微镜和显微拉曼光谱仪的综合分析,在微 观尺度上找到了高能皮秒脉冲激光热损伤 CCD 的 直接证据,有效地支持了 CCD 受激光辐照损伤的热 熔融损伤机理。

- 参考文献
- Liu Zejin, Lu Qisheng, Jiang Zhiping, et al.. Study of damage effect in CCD detectors irradiated locally by laser [J]. Laser Technology, 1994,18(6): 344-347.
 刘泽金,陆启生,蒋志平,等.激光辐照 CCD 图象传感器局部的 破坏效应研究[J].激光技术, 1994, 18(6): 344-347.

 Chenzhi Zhang, Ludovic Blarre, Rodger M Walser, et al...
 Mechanisms for laser-induced functional damage to silicon chargecoupled imaging sensors [J]. Appl Opt, 1993, 32 (27): 5201-5210.

3 X Wang, Z H Shen, J Lu, *et al.*. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picoseconds regimes[J]. J Appl Phys, 2010, 108(3): 033103.

4 Jiang Nan, Zhang Chu, Niu Yanxiong, *et al.*. Numerical simulation of pulsed laser induced damage on CCD arrays [J]. Laser & Infrared, 2008, 38(10): 1004-1007.

姜 楠,张 雏,牛燕雄,等.脉冲激光辐照 CCD 探测器的硬破 坏效应数值模拟研究 [J].激光与红外,2008,38(10): 1004-1007.

- 5 Li Gang, Shen Hongbin, Li Li, *et al.*. Laser-induced damages to charge coupled device detector using a high-repetition-rate and high-peak-power laser [J]. Opt & Laser Technol, 2013, 47: 221-227.
- 6 Sun Shouhong, Guo Lihong, Wang Lijun. Interference damage to visible light plane array CCD induced by 808 nm laser[J]. Journal of Changchun University of Science and Technology, 2008, 31(1): 19-21. 孙守红,郭立红,王立军. 808 nm 激光对可见光面阵 CCD 的千

7 Shen Hongbin, Shen Xueju, Zhou Bing, et al.. Experimental study of 532 nm pulsed laser irradiating CCD[J]. High Power Laser and Particle Beams, 2009, 21(10): 1449-1454. 沈洪斌, 沈学举,周 冰,等. 532 nm 脉冲激光辐照 CCD 实验

研究[J]. 强激光与粒子束, 2009, 21(10): 1449-1454.

8 Qiu Dongdong, Zhang Zhen, Wang Rui, et al.. Mechanism research of pulsed-laser induced damage to CCD imaging devices [J]. Acta Optica Sinica, 2011, 31(2): 0214006.

邱冬冬,张 震,王 容,等.脉冲激光对 CCD 成像器件的破坏 机理研究[J].光学学报,2011,31(2):0214006.

9 Xiao Qinghua, Tu Hailing. Influence of strain in the Si cap layer of Si/SiGe heterostructure on its Raman spectra[J]. Spectroscopy and Spectral Analysis, 2005, 25(5): 719-722.
肖清华, 屠海令. Si/SiGe 异质结构的硅盖层中应变对 Raman 谱特征的影响[J]. 光谱学与光谱分析, 2005, 25(5): 719-722.

栏目编辑:何卓铭

が守紅,郭立紅,主立半.808 nm 激元对可见元面降 CCD 的干 扰损伤研究[J]. 长春理工大学学报,2008,31(1):19-21.